

3DST Software

Preliminary Full Spill Studies w/ ECal

Clark McGrew Stony Brook Univ.

- The full spill simulation
 - → ECal simulation is approximate
 - → These are ECal, 3DST & TPC centered
 - > result probably applies to ECal & STT as well.
 - → Both RHC and FHC studied
- ► Basic performance with different ECal integration times
 - → Looked at 30 ns and 400 ns
 - → Has a direct impact on beam monitoring signal and backgrounds
 - → This doesn't determine selection efficiency and backgrounds
 - Need studies from ECal experts

The Full Spill Simulation

- > Use the full chain
 - → GENIE:
 - > FHC and RHC beam with 7.5×10¹³ POT per spill
 - Includes 250 m of rock upstream of hall
 - → EDepSim:
 - > Track all particles, but only save trajectories hitting sensitve detectors
 - → sand-stt:
 - Simulate ecal response for each individual interaction
 - → ERepSim:
 - Overlay interactions (~3500 per RHC spill).
 - Simulate 3DST and TPC
 - Overlay edep-sim results and simulate electronics response
 - Use sand-stt for ECal
 - Uses 400 ns integration, and does not include dead time and event overlap.
 - For each channel, sort hits by time, and combine hits within the targeted integration window (either 400ns or 30 ns).
 - → CubeRecon
 - Already built to handle full spill, so just run it.

RHC interactions hitting the ECal

- > An interaction hits the ECal if:
 - → A charged particle deposits energy
 - → Deposited energy generates enough light
- ► Interactions per RHC spill: 36.1
 - → Most of the interactions are from the upstream side of the yoke
- Generated Tracks
 - → Create a hit above threshold
 - → Effect of overlaps not considered
- Generated Tracks per spill: 1487
 - → Lots of small hits just above threshold

Resulting Particles per RHC Spill

McGrew

- Looking at particles that "should" make a cluster
- Muons: 19 per spill
 - → These are muons that hit any part of the ECal
 - → Muon entering upstream side→ 15.1 per spill
- > Tracks: 140 per spill
 - → These are all tracks that generate hits in three or more cells

FHC interactions hitting the ECal

- > An interaction hits the ECal if:
 - → A charged particle deposits energy
 - → Deposited energy generates enough light
- ➤ Interactions per FHC spill: 52
 - → Most of the interactions are from the upstream side of the yoke
- Generated Tracks
 - → Create a hit above threshold
 - → Effect of overlaps not considered
- ➤ Generated Tracks per spill: 2166
 - → Lots of small hits just above threshold

Resulting Particles per FHC Spill

- Looking at particles that "should" make a cluster
- Muons: 31 per spill
 - → These are muons that hit any part of the ECal
 - → Muon entering upstream side→ 24.4 per spill
- > Tracks: 188 per spill
 - → These are all tracks that generate hits in three or more cells

ECal Cell Time and Position in Spills

- Double ended read-out means the time and position
 - → These plots are for the 400 ns integration window
 - → Reco Time is the average distance corrected time for both ends of the cell
- Undershoot caused by geometric effects (tracks closer to sensors)
- Position is from the time difference between the ends of the cell
- Similar for FHC and RHC
 - → Plots are for FHC
 - → Strongly affected by ECal thresholds (not well simulated)

Overlap calculations

- A hit is considered to have overlap if (at least one must be true)
 - → Collects energy from two or more separate neutrino interactions
 - → Collects energy from two or more separate particles if
 - > Particles are separated by 50 cm long cell axis
 - > Or, particles are separated by more than 20 ns in time.
- > Fraction of overlapping hits
 - → The number of hits with overlaps divided by the total number of ECal hits
- Fraction of muons with overlaps
 - → Check each hit for a muon to see if it has an overlap (from any source)
 - → Number of muons with an overlapping hit divided by total number of muons.
- The ECal hit simulation does not track which particles contribute to which hits.
 - → Some hits don't have nearby trajectories, some trajectories don't make hits. This introduces uncertainty in this study

RHC overlaps with a 400 ns integration

- This is the integration that is currently implemented in sand-stt
 - → Simulated using a constant fraction discriminator
- ➤ Hits: 625 per spill
 - → Overlaps: 26.7%
 - about 790 w/o considering overlaps
 - → A new simulation has 25% fewer hits.
 - Something changed. What?
- Muons with overlaps
 - → An overlap will distort both the hit time and hit charge
 - → Total overlaps: 52%
 - → Upstream overlaps: 38%
 - Only consider overlap it it is on the upstream side of the detector

FHC overlaps with a 400 ns integration (very preliminary)

- This is the integration that is currently implemented in sand-stt
 - → Truth matching is approximate
- ➤ Hits: 756 per spill
 - → Overlaps: 28%
- Muons with overlaps
 - → Strongly affected by hit thresholds, which are not well simulated
 - → Total overlaps: 24%
 - → Upstream overlaps: 17%
 - Only consider overlap it it is on the upstream side of the detector

RHC overlaps with 30 ns integration

- Approximated by shortening integration window in sand-stt
- Current simulation is not self consistent for short windows
 - → PMT pulses are long compared to 30 ns
 - → 30 ns is short compared to the light transit time in fibers.
 - → If sensor replaced, light yield will be different
- > Simulation results
 - → Hits: 4% overlap
 - → Muons: 21% overlap (13% upstream)
 - This may be affected by threshold issues (possible overestimate?) and truth matching

End Notes

- This is preliminary, and I don't fully understand the ECal hit simulations
 - → More study is needed to show ECal can be used as a beam monitoring target
 - → Looking forward to definitive event selection studies from the ECal group
- There is a lot of activity expected in the ECal due to external interactions
 - → 36 (52) interactions per RHC (FHC) spill will deposit energy
 - → 1490 (2166) particles per RHC (FHC) spill (mostly low energy)
 - > 140 (148) particles creating clusters of 3 or more hits.
 - → Close to 800 (970) hits per RHC (FHC) spill (not accounting for overlaps)
 - → 19 (30) muons per RHC (FHC) spill hit the ECal
 - > 15 (23) muons per RHC (FHC) spill in upstream part of ECal
 - → about 2 or 3 interactions per spill will originate from upstream part of ecal.
- Activity in the T2K barrel ECal has proven problematic
 - → Roughly 4x granularity of KLOE ECal
 - → Lower intensity beam
- ECal as a target for TPC and 3DST
 - → Need carefully evaluation external backgrounds and fiducial volume efficiency for full spills
 - > 400 ns integration: likely problematic for both RHC, and FHC.
 - > 30 ns integration: probably significant overlaps for both RHC and FHC.

Backup Slides